英国论文代写推荐

  • 我们的论文代写服务覆盖英国、澳洲、美国、新西兰、加拿大各地区
  • 我们的擅长各专业Assignment、Essay、Paper及Dissertation代写服务
  • 我们的论文承诺100%原创!100%守时!100%精湛!
  • 我们的Writer都是来自当地高等院校!编辑团队空前强大!
  • 点击订购论文

英国莱斯特essay代写 推特模型预测

Keywords:英国莱斯特essay代写 推特模型预测

在进一步的发展中,人们提出了基于tweets的足球比赛结果预测模型(Stylianos Kampakis,Andreas Adamides, University College London.2014),并研究了这些模型是否能够成功地预测使用历史数据和统计数据的预测模型。第三个模型是用历史数据和Twitter数据构建的。最后一个模型由Cohen’s kappa(它是一种统计方法,用于计算两个评分者,当每个人对同一样本的一个试验进行评分时)测量,结果显示基于twitter的模型比使用历史数据和简单统计的模型表现得更好。如果我们将这两个模型结合起来,我们可以获得比单个模型更高的性能。因此,twitter数据可以为预测足球比赛提供有用的信息。使用的数据集有twitter数据集、历史数据集和组合数据集。twitter的数据集是使用twitters的流API创建的,该API包含200万条他们最喜欢的俱乐部粉丝的tweet。已经创建了与每个团队相关的hashtags列表。带有多个团队的hashtag的tweet已被丢弃,如果特定团队中有多个hashtag,则将其分配给该团队。使用TwitterNLP处理数据。比赛结果以主队获胜、客队获胜或平局来衡量。每个匹配被视为一个实例,它有三个特性:home、away和一个响应变量。输入包括本地功能和外部功能。对于twitter模型,主队和客队使用不同的词包作为输入数据集,使用卡方进行预处理。例如,阿森纳和曼城将拥有与主场球队相同的词汇量,但两者作为客场球队将有不同的特点。采用朴素贝叶斯模型、随机森林模型、支持向量机模型和逻辑回归模型。研究发现,随机森林是twitter模型的最佳分类器。精度高于朴素贝叶斯的精度,但对于历史数据集,朴素贝叶斯是最好的。在组合模型中,随机森林是最好的分类器,在使用bigram时,其性能最好。因此,我们可以得出结论,Twitter包含的信息足以预测一场足球比赛的结果。
英国莱斯特essay代写 推特模型预测
In further development, models for predicting the results of football matches based on tweets (Stylianos Kampakis,Andreas Adamides, University College London.2014) has been proposed and researches were made whether these models can succeed over the predictive models which use historical data and statistics. A third models was constructed with both historical and Twitter data. The final model when measured by Cohen’s kappa (It is a statistic measure used to calculate two raters when each individual rate one trial on the same sample) revealed that twitter-based model performed more better than the model that using historical data and simple statistics. And if we combine both the model, we can achieve a performance higher than that of individual models. So, twitter data can provide useful information for the prediction of football matches. The datasets used were twitter dataset, historical dataset and combined dataset. The twitter dataset was created using twitters’ streaming API which consists of 2 million tweets of fans of their favourite clubs. A list of hashtags associated with each team has been created. The tweets, that have hashtags for more than one team has been discarded and also if it there is more than one hashtag on a particular team it was assigned to that team. TwitterNLP was used to process data. The results were measured as a win for the home team, a win for the away team or a draw. Each match, which was considered as an instance, has three features home, away and a response variable. The input consists of home features and away features. For twitter model different bag of words has been used for home team and away team as input dataset, which was pre-processed using chi-square. For example, Arsenal and Manchester City will have the same bag-of-words as home team, but both will have different features as way team. Naïve Bayes, Random forests, SVM and Logistic regression models were used. It was found that, the random forest was the best classifier for the twitter model. The accuracy was higher than the Naïve Bayes accuracy achieved, but for the historical dataset, Naïve Bayes was the best. Random forest was the best classifier in case of combined model, and the best performance of it was achieved when using bigrams. So, we can conclude that Twitter contains information which is enough to predict the results of a football game.
本段内容来自网络 并不是我们的写手作品 请勿直接剽窃,查重100%,造成后果与本站无关。如需定制论文请记得联系我们。

论文代写 更多分类

  1. 谢菲尔德哈兰姆代写论文
  2. 英国布鲁奈尔论文代写
  3. 英国肯特大学论文代写
  4. 英国拉夫堡论文代写
  5. 英国萨塞克斯论文代写
  6. 英国雷丁大学论文代写
  7. 英国萨里大学论文代写
  8. 东安格利亚论文代写
  9. 英国巴斯大学论文代写
  10. 英国莱斯特论文代写
  11. 英国德比大学论文代写
  12. 英国埃克斯特论文代写
  13. 英国格林尼治论文代写
  14. 英国考文垂论文代写
  15. 英国金斯顿大学代写
  16. 中央兰开夏论文代写
  17. 英国厄尔斯特论文代写
  18. 英国布莱顿论文代写
  19. 英国赫尔大学论文代写
  20. 英国索尔福德论文代写
  21. 英国普茨茅斯论文代写
  22. 英国德蒙特福特代写
  23. 诺丁汉特伦特论文代写
  24. 英国邓迪论文代写
  25. 英国阿伯丁论文代写
  26. 英国埃塞克斯论文代写
  27. 英国西密德兰论文代写
  28. 英国格拉斯哥论文代写
  29. 英国利兹论文代写
  30. 英国华威大学论文代写
  31. 布里斯托尔论文代写
  32. 英国杜伦大学论文代写
  33. 英国伦敦论文代写
  34. 英国伯明翰论文代写
  35. 英国曼彻斯特论文代写
  36. 英国爱丁堡论文代写
  37. 英国利物浦论文代写
  38. 英国剑桥论文代写
  39. 英国牛津论文代写
  40. 英国南安普顿论文代写
  41. Industrial Relations 代写
  42. JAVA J2EE JSP 代写
  43. C C# C++ 编程代写
  44. SPSS 代写
  45. 数据库MYSQL MSSQL代写
  46. Website Design 代写
  47. SAS SAP 代写
  48. Humanities Essay代写
  49. Homework 代写
  50. Mathematics Essay 代写
  51. Biotechnology Essay 代写
  52. Taxation Law Essay 代写
  53. Chemistry Essay 代写
  54. Geography Essay 代写
  55. Science Essay 代写
  56. 美国ESSAY代写
  57. 澳洲Assignment代写
  58. MBA Essay代写
  59. Accounting Essay 代写
  60. Biology Essay 代写
  61. Business Law Essay代写
  62. History Essay 代写
  63. Law Essay 代写
  64. Economics Essay 代写
  65. Statistics Essay 代写
  66. Psychology Essay 代写
  67. Electrical Essay 代写
  68. Nursing Essay 代写
  69. English Essay 代写
  70. Arts Architecture Essay 代写
  71. Physics Essay 代写
  72. Marketing Essay 代写
  73. Finance Essay 代写
  74. Project Management 代写
  75. Strategic Marketing 代写
  76. Change Management 代写
  77. Personal Statement 代写
  78. Data Structure 代写
  79. Database Management 代写
  80. Information Technology代写
  81. Computer Network 代写
  82. CDR Engineering 代写
  83. Case Study 代写
  84. Operating System 代写
  85. Operations Essay 代写
  86. Finance Planning 代写
  87. 4Pofmarketing Essay 代写
  88. Human Resource Essay代写
  89. MYOB 代写
  90. Financial Accounting 代写
  91. Managerial Accounting 代写
  92. Public Relations 代写
  93. Personal Finance 代写
  94. Cost Accounting Essay 代写
  95. Strategy Essay 代写
  96. Dissertation 代写

联系论文代写

  • 移动端用户请长按二维码关注
  • QQ:7878393 微信同号
  • Email:[email protected]
  • 功能性链接

    1. 打开所有专题
    2. 关闭本站专题
    3. 论文检测
    4. 英国论文代写价格
    5. 常见问题
    6. 关于Joy论文代写

    论文代写24小时在线

    1. 澳洲论文代写
    2. 英国论文代写
    3. 美国论文代写
    4. 留学生论文代写

    论文代写商务合作

    1. 论文代写隐私保护
    2. 论文代写服务条款
    3. 论文代写就业机会
    4. 论文代写优惠活动
    5. 论文代写代理申请

    COPYRIGHT © 2016 ESSAYJOY.COM HELP ALL RIGHTS RESERVED. OUR SERVICE PROVIDED WILL BE USED SOLELY FOR THE PURPOSE OF RESEARCH.网站统计